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INTRODUCTION

Coordinates  2.4  is  a  Macintosh  application  which
allows the user to convert coordinates from geodetic
to  Cartesian  coordinate  systems,  and  vice-versa.  It
will  also  compute  distances  along  the  ellipsoidal
surface of the Earth and baseline distances as well as
chord distances. All of these concepts are defined and
described in this Read-Me file.

The  program  was  written  in  FutureBasic™
(originally from Zedcor, Inc. of Tucson, AZ and soon
to come from Staz Software) and was benchmarked
on Macintosh  Quadras  660AV and 630.  It  has  not
been tested on PowerPC platforms, but presumably
will work in 68k emulation mode.

What's New in Version 2.4?

Essentially,  what  drove  the  author  to  make  this
upgrade was that he discovered better ways to make
the  interface  by  finally  getting  over  his  fear  of
ResEdit™.  The  application  is  now  mostly  menu
driven with only a few buttons needed to select types
of coordinates  etc.  A splash of  color  was added to
give the main operating window a little pizzazz. Also
added is an ability to print out the input and output
values and one might note that the angular measures
button change the angluar  components "on the fly"
(as  requested  by  Traci's  husband,  Mark,  some  six
months ago!). Information can be found at the bottom
of  each  menu  giving  a  short  synopsis  of  the
calculations and the ellipsoids built into the menus. If
your  favorite  ellipsoid  is  missing  from  the  menu,
please drop me a line, I will add it to the list in the
next upgrade.

This  little  application  has  been  found  to  be  quite
useful among the growing GPS user community and I
thank those of you who have shown interest for your
input and suggestions.

What's New in Version 2.3a?

About  a  week  after  the  first  public  release  of
Coordinates2.3a,  a  user  (thanks,  Traci!)  suggested
that  a  useful  capability  would  be  to  compute  the
coordinates  of  a  distant  point  given  the  geodesic
distance  and  azimuth  (bearing).  Never  declining  a
good challenge, one could squeeze the task buttons a
little closer together and write a new local function
that would make the calculation. While making the

modifications,  it  became  apparent  that  handling
routine events in the interface could be done a little
better  (i.e.,  the author is  still  climbing the learning
curve!). A better way of handling window refreshes
was made by moving all the drawing of the text and
graphics into their own local function. The keyboard
entry was beefed-up to allow the tab key to control
movement between edit  fields and the enter  key to
activate the outlined buttons,  in the same way that
one  can  in  "mainstream" applications.  Also,  colors
were  added to  the  user-addressable  edit  fields  (but
refreshing them brings them back in B/W (The author
will figure that one out someday!). A new chapter in
this  read  me  file  explains  how the  coordinates  are
calculated given the location of a starting point and a
distance and azimuth to a second point.

The remainder of this file describes the definitions,
theory and source material from which I worked to
create the application.

BACKGROUND AND HISTORY

As we are all  well  aware,  we live on a (basically)
round planet (although, believe it or not, chapters of
the  Flat  Earth  Society still  exist!).  For  some
scientists, engineers and surveyors, the exact shape of
the  planet  is  significant  in  their  calculations.  The
study of the shape of planets falls under the discipline
of  Geodesy,  which  itself  falls  under  the  realm  of
Geophysics–a branch of Earth Science. The history of
Geodesy  stretches  all  the  way  back  to  the  early
Egyptians and Aztecs, where it mixed intimately with
astronomical observations. Of course, the classic tale
that we all learned in primary school was the story of
Eratosthenes, who in about 220 BC, noticed that on
the longest  day of the year,  the Sun shone straight
down a water well in the city of Syene, along the Nile
(near  present  day  Aswan).  A year  or  two later,  he
noticed, again, on the longest day of the year, in the
city of Alexandria (which is north of Syene) that a
tall pole in the center of city still  cast  a shadow at
mid-day. Using the Sun as a point source, he deduced
that the only explanation for these occurrences was
that the surface of the Earth must be curved. After
riding repeatedly between Alexandria and Syene, he
measured  the  distance  between  the  two  cities  and
then was able to calculate the diameter of the Earth.
He came up with a  value  that  was about  16% too
large, but the fact remains that he deduced the round
shape of the Earth 1800 years before Magellan sailed
around the world, thereby proving the roundness of
Earth!
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Figure 1.   Cross-sectional  view of the Earth ellipsoid demonstrating the terms geodesic,  baseline and
ellipsoidal chord. The case of the geodesic passing through one of the poles only occurs when points A and
B lie on complementary longitudes. The Earth's flattening has been greatly exaggerated in this figure.

Much can be found in the literature about theearly
history of the knowledge of the Earth's shape, which,
in  the  earliest  musings  of  scientific  thinkers,  was
intertwined with Man's understanding of the cosmos
and  his  developing  cosmological  model.  For  those
seriously  interested,  I  recommend  Lindberg [1992]
and Grant [1994] among others. Of the same ilk, but
more on the popular side are: Koestler [1959], Ferris
[1988]  and  Harrison [1986].  Later,  through  the
Renaissance,  Geodesy  got  intermixed  with
cartography and  mapping,  see,  e.g.,  Wilford [1981]
and  Hale [1994].  In  the  20th  century,  Geodesy
entered the space age with the launching of Sputnik.
Its  little  transmitter,  beeping  its  way  around  the
world,  gave  scientists  a  chance  to  measure  its
Doppler  frequency  shift  and  hence  derive  certain
basic parameters regarding the path it followed and to
deduce  the  flattening  of  the  Earth.  Of  course,  the
flattening  had  been  theorized  and  detected  long
before the space age.

DEFINITIONS AND GENERAL 
THEORY

Much of the material given here can be found in any
good volume dealing with Geodesy, such as Bomford
[1980] or Vanicek & Krakiwsky [1986].

The Ellipsoidal Shape of the Earth

The simplest geometric description for the shape of
the  Earth  is  that  of  a  sphere.  However,  a  better
approximation is that described by an oblate ellipsoid

of  revolution  (which  is  sometimes  called  the
spheroid). As shown in cross section in Figure 1, its
equatorial radius (the semi-major axis, denoted by the
letter  "a")  is  larger  than its  polar  axis  (semi-minor
axis,  b).  For  the  Earth,  the  semi-major  axis  value
adopted by the International Earth Rotation Service
in 1992 (IERS-92) is  a = 6378136.3 m. The ratio of
the  difference  between  the  two  axes  taken  with
respect to the semi-major axis is called the flattening,
which is given by:

f =
a−b( )
a

=1−
b
a (1)

Typically, the flattening is expressed as its reciprocal,
which for IERS-92 is

1/f = 298.257 (2)

This means that the Earth's semi-minor axis is about
three  tenths  of  one  percent  smaller  than  its  semi-
major axis. Its not all that different, but for those who
need to know the relative distance between points on
the Earth's surface to an accuracy of a hundred meters
or  better,  the flattening must be accounted for.  My
personal need was to distinguish changes in relative
distances between points separated by thousands 
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of kilometers in order to detect and monitor tectonic
motion (see Smith et al. [1990]).

Another  parameter  commonly  associated  with
ellipses and ellipsoids is called the  first eccentricity.
It is the distance between the center of the ellipse and
one of it's foci divided by the semi-major axis:

e =
a2 −b2
( )

1
2

a
(3a)

It  is  more  common  to  use  the  square  of  the  first
eccentricity:

e 2 =
a2 −b2
( )

a2 =1−
b2

a2 =2f−f2

(3b)

As seen in (3b), the eccentricity can be calculated on
the basis of the flattening, thus only the semi-major
axis and the flattening are the fundamental quantities
from which most further calculations can be made.

Coordinate Systems

The  simplest  coordinate  system  is  the  Cartesian
coordinate  system  defined  by  a  triad  of  numbers
(usually denoted as X, Y, and Z or X1, X2, and X3).
A  location  in  three-dimensional  space  can  be
assigned  coordinates  and  relative  distances  and
directions to other points in the same space can be
easily determined.  However,  since we are creatures
that  exist  on  the  outer  surface  of  an  ellipsoid,  our
minds are more receptive to the notion of distances
along the surface rather than through a chunk of the
Earth.  For  really  short  distances  it  doesn't  matter,
that's  why regional  surveyors  rely  on  principles  of
plane trigonometry. Many short triangulation chains
and level  lines  (say,  <  20  km) do  not  require  any
special treatment to account for the curved surface of
the  Earth,  a  planar  approximation  is  usually
sufficient. Longer triangulation chains and level lines,
sometimes spanning continents, require a "mapping",
one way or another, onto a curved surface.

The natural coordinate system for a spherical planet
would be to use spherical latitude and longitude, with
angles being measured at the center of the Earth, as
its origin. This could be used for the flattened Earth
as well, but the system has difficulties in that the line

connecting the surface point to the center of the Earth
does  not  intersect  the  ellipsoidal  surface  at  right
angles,  which  causes  problems  if  one  is  also
measuring  height.  Optimally,  surveyors  and
geodesists  like  to  keep  the  local  horizontal  and
vertical orthogonal to one another–it just makes for a
cleaner way to treat the local coordinate frame. So,
on  an  ellipsoidal  Earth,  geodetic  latitude and
longitude have  been  defined  (see  Figure  2).  Of
course, geodetic longitude is equivalent to spherical
longitude since the Earth's Equator is a circle (as are
lines  of  equal latitude).  The  geodetic  latitude  is
related  to  the  spherical  latitude,  sometimes  called
reduced latitude by the relation

tanφ =
tanθ

1−e2( )
1
2
=
a
b
tanθ

(4)

Thus, by using geodetic  latitude,  longitude and the
height  above  the  ellipsoid,  we  gain  a  convenient
orthogonal triad of coordinates by which each point
in and around the Earth can be located in an intuitive
way.  One  of  the  purposes  of  Coordinates2.4  is  to
make  the  transformation  between  this  and  the
Cartesian coordinate system.

Lines upon the Ellipsoid: The Geodesic

The shortest line which lies on a sphere connecting
two points  on  its  surface  is  defined  to  be  a  great
circle.  For  example,  on a  sphere,  the  shortest  path
between New York and Istanbul (which are almost at
the  same  latitude)  is  not via  the  latitude  line
connecting the two cities, but  is along a line which
passes just south of Iceland. One can easily prove this
with  a  piece  of  string  and  a  globe.  We can  easily
visualize these great circles and understand that they
define a plane which passes through the center of the
sphere.

On an ellipsoidal Earth, the shortest line between two
points  is  no  longer  a  great  circle.  It  is  a  strange
geometric  concoction  (from  differential  geometry),
called a geodesic. A geodesic line between two points
does  not  lie  in  the  plane  defined  by  the  two  end
points and the Earth's center. Weird, huh? That is why
computing geodesic distances and azimuths is such a
chore.  We  no  longer  can  depend  on  the  simple
relationships from spherical trigonometry. The details
of all the calculations are given below.
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Figure 2.  Definition of latitudes. The geodetic latitude is denoted f, and is the angle between the equatorial
plane and the line orthogonal to the ellipsoid. The reduced latitude is denoted  q.  N denotes the radius of
curvature in the prime meridian and is measured from the Z-axis to the point P on the ellipsoid. The height
h, gives the distance from P to P', on the Earth's surface.

THE ALGORITHMS

Geodetic Coordinates to Cartesian 
Coordinates

The  transformation  from  geodetic  coordinates  to
Cartesian  coordinates  is  straight  forward.  We  are
given, for a point on or near the Earth's surface the
following:

φ geodetic latitude
λ longitude
h height above the ellipsoid

we  desire  to  find  the  corresponding  X,  Y,  and  Z.
These are found via the closed formulas:

X = N+h( )cosφ cosλ

Y = N +h( )cosφsinλ (5)

Z = N 1−e2( ) +h[ ]sinφ

where  N is  the  radius  of  curvature  in  the  prime
vertical (Figure 2), given by

N =
a

1−e2 sin2φ (6)

Cartesian Coordinates to Geodetic 
Coordinates

The  computation  from  Cartesian  to  geodetic
coordinates  is  much  more  complicated  since
equations (5) can not be easily inverted. Through the
years, several iterative algorithms have been used and
more recently, some very good closed 
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ones have been derived. The one I've used for many
years is the one by Bowring [1976]. The computation
goes as follows.

First,  an  approximation  for  the  reduced  latitude  is
made via

tanθ =
Z

X2 +Y2

 ⎛
 ⎝
 ⎜  ⎞

 ⎠
 ⎟ a
b

⎛ 
⎛ 

⎛ 
⎛ 

=
Z

X 2 +Y 2

 ⎛
 ⎝
 ⎜

 ⎞
 ⎠
 ⎟ 1
1− f
 ⎛
 ⎝
 ⎜  ⎞

 ⎠
 ⎟ (7a)

from this, using some trig identities we can compute

cosθ =
1

1+ tan2 θ (7b)

sinθ = 1−cos2θ (7c)

where the sign of the sinθ is the same as the sign of
tanθ. These  equations  are  used  to  calculate  the
geodetic latitude from

tanφ =
Z +e'2 bsin3θ

X 2 +Y2 −e2acos3θ

=
Z + a2 − b2

( ) / b[ ]sin 3 θ

X 2 +Y 2 − a2 − b2
( ) / a[ ]cos 3 θ

(7d)

The longitude is calculated simply by

λ =tan −1 Y
X
 ⎛
 ⎝

 ⎞
 ⎠ (7e)

and the height is computed from

h =
X2 +Y2

cosφ
−N (7f)

where  N is  given  from  equation  (6)  and  the
computation of l are made using a function similar to
a  ATAN2 function from FORTRAN. Bowring notes
that this algorithm should provide accurate latitudes
to within 0.00000003" (< 1 µm) for points near the
Earth's surface (i.e. between -5000m and +10000m).

Geodesic Length Computations

As  mentioned  previously,  the  computation  of  the
geodesic  length  and  its  associated  azimuths  is  no
trivial  exercise.  I  have  used  the  iterative  algorithm

devised  by  Vincenty [1975].  Bowring [1986]  has
devised  a  closed  formulation,  but  I've  not  yet
explored this algorithm, but hope to do so in the near
future.  A  description  of  the  Vincenty  algorithm
follows.

In this problem (known as the inverse problem, the
direct problem is treated in the next chapter), we are
given the latitudes (φ1, φ2) and longitudes (λ1, λ2) of
two points on the Earth's surface. Height is irrelevant
in the computation for geodesic lines on the ellipsoid.
We assume that  the point  on the  Earth's  surface is
reduced to the ellipsoidal  surface by simply setting
the height to zero.

First,  we  the  difference  the  longitudes  as  a  first
approximation for the quantity δλ:

δλ =λ2 − λ 1 (8a)

The  iteration  begins  with  the  computation  of
intermediate values  s, a and sm by calculating the
sin  and  cos  terms,  then  using  the  ATAN2 function
mentioned  above.  Also  used,  are  the  reduced
latitudes,  θ1, θ2,  which  can  be  found  by  inverting
equation (4).

sin2 s = cosθ2 sinδλ( )
2

+ cosθ1 sin θ2 −sinθ1 cosθ2 cosδλ( )
2

(8b)

coss =sinθ1sinθ2 −cosθ1 cosθ2 cosδλ
(8c)

tans =
sins
coss (8d)

and

sina =
cosθ1 cosθ2 sinδλ

sins
(8e)

cos2s m =coss −
2sinθ1sinθ2

cos2a
(8f)

These  quantities  are  used  in  the  following  two
equations to determine a new value of δλ, and make
another iteration starting with equation (8b) until the
value δλ reaches some convergence level (I used 10-

20, or 20 iterations, whichever comes first):

C =
f
16

cos2 a 4 + f 4−3cos2 a( )[ ]
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(8g)
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L =δλ − 1−C( ) fsina s +Csins{

cos2s m +Ccoss −1+ 2cos2 2s m( )[ ]}

(8h)

then δλ =L  and, as mentioned, the iteration begins
again at equation (8b). Upon convergence, then the
following  expressions  are  evaluated  to  obtain  the
geodesic distance,  s, and the azimuth from site 1 to
site 2, a1, and the azimuth from site 2 to site 1, a2:

s =bAs −Δs( ) (9a)

tana1 =
cosθ2 sinδλ

cosθ1sinθ 2 −sinθ1cosθ2 cosδλ
(9b)

tana 2 =
cosθ1sinδλ

−sinθ1cosθ2 +cosθ1sinθ2 cosδλ
(9c)

where

A=1+
u2

16384
4096 + u2 −768+u2 320−175u2

( )[ ]{ }

(10a)

B=
u2

1024
256 + u2 −128+u2 74−47u2

( )[ ]{ }

(10b)

u2 =
a2 −b2

b2 cos2a (10c)

Δs =Bsinσ cos2σ m +
1
4

B cosσ −1+ 2cos 2 2σ m( )[
 ⎧ ⎨ ⎩

−
1
6

B cos2σ m −3 + 4sin2 σ( ) −3+ 4 cos2 2σ m( )  ⎤
 ⎦

 ⎫
 ⎬
 ⎭

(10d)

So, now I'm sure you can appreciate why this isn't so
easy!

Coordinates of Second Point, Given 
Distance and Bearing

We now will treat the direct problem of long lines on
the ellipsoid. In this case we are given the location
(φ1,λ1) of  a  point  and  the  geodesic  length  (s)  and
bearing (or azimuth,  a1) to a second point. We want
to compute the latitude and longitude (φ2,λ2) for the
second  point.  Again,  we  follow  Vincenty [1975]
(borrowing equations from above, when needed) and

use  an  iterative  approach,  which  should  yield
coordinates with an accuracy of 0.00005" of arc.

The computations begin with a computation for the
angular distance on the sphere from the equator to the
first point (s1). Using the reduced latitude,  θ1,  from
equation (4) we write

tans1 =tanθ1 cosa1 (11)

and the azimuth of the geodesic at the equator

sina =cosθ1sina1 (12)

Next, some auxiliary quantities are computed

u2 =
a2 −b2

b2 cos2a (13a)

A=1+
u2

16384
4096 + u2 −768+u2 320−175u2

( )[ ]{ }

(13b)

B=
u2

1024
256 + u2 −128+u2 74−47u2

( )[ ]{ }

(13c)

Now we begin an  iterative loop on  s,  the angular
distance between the two points on the sphere, until
the change between iterations becomes negligible (a
criteria  of  1.E-20  or  20  iterations  was  used  in  the
program).  To  start  the  iterations,  a  value  of  s =
s/(bA) is used. Then

2sm =2s1 +s (14)

Δs =Bsinσ cos2σ m +
1
4

B cosσ −1+ 2cos 2 2σ m( )[
 ⎧ ⎨ ⎩

−
1
6

B cos2σ m −3 + 4sin2 σ( ) −3+ 4 cos2 2σ m( )  ⎤
 ⎦

 ⎫
 ⎬
 ⎭ (15)

s =
s

bA
+ Δσ (16)

and the sequence goes back to equation(14) until it
reaches convergence. Now, the latitude for the second
point can be computed from

tanφ2 =
sinθ1 coss + cosθ1 sins cosa1

1− f( )G
(17)

where

G =sin2a + sinθ1sins −sinθ1sins cosa( )
2

[ ]
1 2
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The difference in longitude on the auxiliary sphere,
δλs is given by
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tanδλs =
sins sina1

cosθ1coss −sinθ1 sins cosa1

(18)

Now using C from equation (8g) and other quantities
computed here, we insert all these into equation (8h)
to get the difference in longitude on the ellipsoid. The
azimuth from the second point to the first (sometimes
called back-azimuth) is

tana 2 =
sina

−sinθ1sins +cosθ1 coss cosa1

(19)

Again,  for  the  computation  of  the  inverse  tangent
function in equations (18) and (19), an  ATAN2-type
function  has  been  used  to  insure  proper  quadrant
placement. Vincenty notes that an approximation can
be made by trimming equation (13b) back a bit, but
this was not adopted here. The full expression given
in equation (13b) was used.

Baselines and Chords

The rest is a piece of cake! The computation for the
baseline  distance,  b,  is  made  in  Cartesian  space
simply  by  extending  the  Pythagorean  theorem  to
three-dimensions:

b = X2 −X1( )
2
+ Y2 −Y1( )

2
+ Z2 −Z1( )

2

(11)

The chord distance uses the same equation, but where
the  X,  Y, and  Z terms are computed for the reduced
point on the ellipsoid. This is the  ellipsoidal chord,
not the spherical chord.

HOW TO USE COORDINATES2.4

Once you've  grasped the concepts  discussed in  the
section on General Theory, then using the application
is  pretty  much  self  evident.  Upon  launching  the
application,  the  user  is  provided with  two  sets  of
menus  (in  addition  to  a  small  File menu  and  a
grayed-out  Edit  menu).  Selecting  from  the
Computation  menu  will  define  the  task  to  be
performed and selecting from the  Ellipsoid  menu
will define the ellipsoid to be used (or specified by
the user). If you forget to choose an ellipsoid, and one
is  needed  for  the  task  you've  selected,  then  a
reminder window will ask you to select an ellipsoid.
The steps are quite simple.

Step 1: Select  which  task  to  perform  from  the
Computation menu.

Step 2: Choose  which  ellipsoid  to  use  from  the
Ellipsoid  menu. Note,  this is  not  needed
for baseline calculations if you are working
in Cartesian coordinates.

Step 3: Enter in coordinates into appropriate fields
(the ones surrounded by light red). Be sure
to select the appropriate units (e.g., decimal
degrees,  degrees-minutes-seconds  or  X,  Y,
Z; the latter, when appropriate)

Step 4: Click  the  "Calculate"  button  and  read
answers in the fields surrounded by green.

Step 5: If you need a print out of the last calculation,
use  the  Print ...  menu  item  in  the  File
menu (along with Page Set-Up ...).

Step 6: To  quit  the  program,  either  click  on  the
"Quit"  button  or  select  "Quit"  from  the
File menu.

That's all there is to it!

REACHING THE AUTHOR OF THIS 
APPLICATION

He can be reached via e-mail at the following 
addresses:

KD3RW@aol.com 
or

jrobbins@magus.stx.com

Regular mail can be sent to

John Robbins
Hughes STX Corp.
7701 Greenbelt Road, Suite 400
Greenbelt, MD  20770   USA

Please notify him if you discover bugs or suspect 
incorrect answers.

Legal Junk:

The  FutureBasic™  version  of  Coordinates2.4  was
derived from a QuickBasic™ version on the author's
own time and reflects  upon only  the  opinions  and
expertise of the author. Neither the author nor Hughes
STX  can  be  held  liable  for  any  defects  or
deficiencies: i.e.,  use at your own risk. I have done
my best to verify the results which this application
produces, but I can not be 
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held  responsible  for  the  results  given  by  this
application,  especially  when  used  for  commercial
benefit.  This  software  is  available  for  free
distribution, but if you pass it along, please be sure
this Read-Me file goes with the application.
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